High-Intensity Precision Muonium Physics at Fermilab Daniel M. Kaplan ## for the collaboration: S. Corrodi, ¹ C. Gatto, ^{6,7} C. Izzo, ³ C. J. Johnstone, ³ D. M. Kaplan, * ^{4,5} K. R. Lynch, ³ D. C. Mancini, ⁴ A. Mazzacane, B. McMorran, J. P. Miller, J. D. Phillips, T. J. Phillips, R. D. Reasenberg, T. J. Roberts, 4,5 J. Terry⁴ ¹ANL, ²Boston U., ³Fermilab, ⁴Illinois Institute of Technology, ⁵Muons, Inc., ⁶INFN Napoli, ⁷Northern Illinois U., ⁸U. Oregon, ⁹U. California San Diego CASS * Spokesperson †Also at Zurich Instruments Fermilab P5 Meeting: Open Session 22 March 2023 ## Muonium Physics Goals - (**Muonium**: hydrogen-like μ+e- atom) - Muonium-antimuonium (M-M) oscillations: complementary to Mu2e — differently sensitive to CLFV new physics - both should be sought as sensitively as possible - Muonium spectroscopy: atomic levels exquisitely predicted by QED (neither strong nor finite-size corrections) - → clear windows for new physics - Muonium gravity: "tabletop" experiment sensitive to possible 5th force - g 2, leptonic B, & W-mass anomalies → renewed interest - only way to test 2nd generation's gravitational coupling ## Competitive Landscape - **PSI**: world's most intense surface-muon beams - best previous M-M oscillation limit (MACS, 1999) - new M spectroscopy experiments: Mu-MASS (PSI, 1S-2S); MuSEUM (J-PARC, hyperfine) - ∘ together with g-2 → potential μ -only α value - **HIMB** (PSI upgrade): goal $x \approx 30$ rate increase - **PIP-II** ("AMF"): potentially x ~10² over HIMB - In ≈ 10 years Fermilab could be world's best M physics venue! - R&D opportunity <u>now</u> at existing "MTA" lowenergy µ beamline @ Fermilab 400 MeV Linac - cost-effective few-M\$, few-year program - Collaboration formed, R&D program proposed